A Facile Conversion of Aliphatic Aldehydes

to 1,1-Difluoroalkanes

A. García Martínez*a, J. Osío Barcinaa, A. Z. Rysa, L. R. Subramanianb.

*Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain.

bInstitut für Organische Chemie der Universität, Auf der Morgenstelle 18, D-7400 Tübingen, Germany.

Abstract: Aliphatic aldehydes can be easily converted to 1,1-diffuoroalkanes by reaction of the corresponding gem-bistriflates with tetrabutylammonium diffuorotriphenylstannate.

Organofluorine compounds are of demonstrated importance in organic chemistry because of their applications in the areas of biological chemistry, agrochemicals, pharmaceuticals and fluoropolymers¹. Numerous fluorinating reagents² have been developed for the transformation of aldehydes to the difluoromethyl group like NH₂-NH₂/IF³, SF₄⁴ or DAST⁵. However, most of these reagents present disadvantages because of their toxicity and handling difficulties or require special equipment and/or vigorous reaction conditions²⁻⁵. In order to find an easy procedure for the synthesis of the -CHF₂ moiety, in the present work we have studied the reaction of *gem*-bistriflates, which are obtained by reaction of the corresponding aliphatic aldehydes with triflic anhydride (Tf₂O)⁶, with [n-Bu₄N]⁺F⁻⁷, CsF/18-crown-6⁸ and the recently reported⁹ tetrabutylammonium difluorotriphenylstannate ([n-Bu₄N]⁺[Ph₃SnF₂]⁻).

R-CHO
$$\longrightarrow$$
 R-CH(OTf)₂ \longrightarrow R-CHF₂

The reaction of *gem*-bistriflates with *n*-Bu₄NF and CsF/18-crown-6 affords mixtures in which the aldehyde is the main product. These results can be explained by residual moisture in the reagents⁷ or by fission of the S-O bond. In contrast to this, the reaction with the non-hygroscopic [*n*-Bu₄N]⁺[Ph₃SnF₂] affords the corresponding *gem*-difluorides in good yield Table 1)¹⁰. Therefore, our procedure is a viable alternative for the transformation of aliphatic aldehydes into the difluoromethyl group.

Table 1. Yields of conversion of aldehydes to gem-bistriflates and 1,1-difluoroalkanes.

Aldehyde	Yield of gem-bistriflate(%)	Yield of 1,1-difluoroalkane(%)*
Tridecanal	85	75
Octanal	81	77
3-Phenylpropionaldehyde	74	70
Phenylacetaldehyde	62	68 ^b
2-Phenylpropionaldehyde	63	59
2-Ethylhexanal	68	63 ^b
Cyclohexanecarboxaldehyde	76	72 ^b
Cyclooctanecarboxaldehyde	72	72 ^b

^{*}All compounds were characterized by IR, MS, ¹H-NMR, and ¹³C-NMR spectroscopy.

Acknowledgement: We thank the DCICT (Spain) for financial help (Grant PB-880115). We are also especially indebted to Professor M. Hudlicky for his helpful comments.

References and Notes

1) Fluorine-containing Molecules. Structure, Reactivity, Synthesis and Applications; Liebman, J. F.; Greenberg, A.; Dolbier, W. R. Jr. Eds.; VCH; New York. 1988. 2) Welch, J. T. Tetrahedron 1987, 43, 3123. 3) Rozen, S.; Zamir, D. J. Org. Chem. 1991, 56, 4695.4) Boswell, G. A.; Ripka, W. C.; Schribner, R. M.; Tullock, C. W. Org. React. 1974, 21, 1. 5) Middleton, W. J. J. Org. Chem. 1975, 40, 574. 6) García Martínez, A.; Martínez Alvarez, R.; García Fraile, A.; Subramanian, L. R.; Hanack, M. Synthesis 1987, 49. Gem-bistriflates were prepared according to ref. 6 using N,N-diisobutyl-2,4-dimethyl-3-pentylamine (Fluka) as base. 7) Chi, D. Y.; Kilbourn, M. R.; Katzenellenbogen, J. A.; Welch, M. J. J. Org. Chem. 1987, 52, 658. 8) Gingras, M.; Harpp, D. N. Tetrahedron Lett. 1988, 29, 4669. 9) Gingras, M. Tetrahedron Lett. 1991, 32, 7381. 10) In a typical procedure, 3.7g (6 mmol) of tetrabutylammonium difluorotriphenylstannate are added, at room temperature, to a solution of 2 mmol of gem-bistriflate in 25 ml of dry methylene chloride. After stirring for 2 h (8 h in the case of α -branched gem-bistriflates), 50 ml of n-pentane are slowly added to the reaction mixture. After separation of the inorganic salts, the solvent is distilled using a 20 cm Vigreux column and the gem-diffuoride is purified by chromatography (silica gel, n-pentane). The results are summarized in Table 1.

(Received in UK 21 September 1992)

Determined by GLC using internal standard.